CSE LATEST IEEE PROJECT TITLES

PROJECT TITLES FOR CSE|COMPUTER SCIENCE LATEST IEEE PROJECT TITLES|2012 IEEE LATEST COMPUTER SCIENCE PROJECT TITLES


INFORMATION FORENSICS AND SECURITY
SPREAD SPECTRUM WATERMARKING SECURITY:--DOTNET--2009
This paper presents both theoretical and practical analyses of the security offered by watermarking and data hiding methods based on spread spectrum. In this context, security is understood as the difficulty of estimating the secret parameters of the embedding function based on the observation of watermarked signals. On the theoretical side, the security is quantified from an information-theoretic point of view by means of the equivocation about the secret parameters. The main results reveal fundamental limits and bounds on security and provide insight into other properties, such as the impact of the embedding parameters, and the tradeoff between robustness and security. On the practical side, workable estimators of the secret parameters are proposed and theoretically analyzed for a variety of scenarios, providing a comparison with previous approaches, and showing that the security of many schemes used in practice can be fairly low.
RESOURCE ALLOCATION IN OFDMA WIRELESS COMMUNICATIONS SYSTEMS SUPPORTING MULTIMEDIA SERVICES:--DOTNET--2009
We design a resource allocation algorithm for down-link of orthogonal frequency division multiple access (OFDMA) systems supporting real-time (RT) and best-effort (BE) services simultaneously over a time-varying wireless channel. The proposed algorithm aims at maximizing system throughput while satisfying quality of service (QoS) requirements of the RT and BE services. We take two kinds of QoS requirements into account. One is the required average transmission rate for both RT and BE services. The other is the tolerable average absolute deviation of transmission rate (AADTR) just for the RT services, which is used to control the fluctuation in transmission rates and to limit the RT packet delay to a moderate level. We formulate the optimization problem representing the resource allocation under consideration and solve it by using the dual optimization technique and the projection stochastic subgradient method. Simulation results show that the proposed algorithm well meets the QoS requirements with the high throughput and outperforms the modified largest weighted delay first (M-LWDF) algorithm that supports similar QoS requirements.
ANALYSIS OF SHORTEST PATH ROUTING FOR LARGE MULTI-HOP WIRELESS NETWORKS:--DOTNET--2009
In this paper, we analyze the impact of straight line routing in large homogeneous multi-hop wireless networks. We estimate the nodal load, which is defined as the number of packets served at a node, induced by straight line routing. For a given total offered load on the network, our analysis shows that the nodal load at each node is a function of the node’s Voronoi cell, the node’s location in the network, and the traffic pattern specified by the source and destination randomness and straight line routing. In the asymptotic regime, we show that each node’s probability that the node serves a packet arriving to the network approaches the products of half the length of the Voronoi cell perimeter and the load density function that a packet goes through the node’s location. The density function depends on the traffic pattern generated by straight line routing, and determines where the hot spot is created in the network. Hence, contrary to conventional wisdom, straight line routing can balance the load over the network, depending on the traffic patterns.
SECURE AND POLICY-COMPLIANT SOURCE ROUTING:--DOTNET--2009
In today’s Internet, inter-domain route control remains elusive; nevertheless, such control could improve the performance, reliability, and utility of the network for end users and ISPs alike. While researchers have proposed a number of source routing techniques to combat this limitation, there has thus far been no way for independent ASes to ensure that such traffic does not circumvent local traffic policies, nor to accurately determine the correct party to charge for forwarding the traffic. We present Platypus, an authenticated source routing system built around the concept of network capabilities, which allow for accountable, fine-grained path selection by cryptographically attesting to policy compliance at each hop along a source route. Capabilities can be composed to construct routes through multiple ASes and can be delegated to third parties. Platypus caters to the needs of both end users and ISPs: users gain the ability to pool their resources and select routes other than the default, while ISPs maintain control over where, when, and whose packets traverse their networks. We describe the design and implementation of an extensive Platypus policy framework that can be used to address several issues in wide-area routing at both the edge and the core, and evaluate its performance and security. Our results show that incremental deployment of Platypus can achieve immediate gains.
MOBILITY MANAGEMENT APPROACHES FOR MOBILE IP NETWORKS: PERFORMANCE COMPARISON AND USE RECOMMENDATIONS:--JAVA--2009
In wireless networks, efficient management of mobility is a crucial issue to support mobile users. The Mobile Internet Protocol (MIP) has been proposed to support global mobility in IP networks. Several mobility management strategies have been proposed which aim reducing the signaling traffic related to the Mobile Terminals (MTs) registration with the Home Agents (HAs) whenever their Care-of-Addresses (CoAs) change. They use different Foreign Agents (FAs) and Gateway FAs (GFAs) hierarchies to concentrate the registration processes. For high-mobility MTs, the Hierarchical MIP (HMIP) and Dynamic HMIP (DHMIP) strategies localize the registration in FAs and GFAs, yielding to high-mobility signaling. The Multicast HMIP strategy limits the registration processes in the GFAs. For high-mobility MTs, it provides lowest mobility signaling delay compared to the HMIP and DHMIP approaches. However, it is resource consuming strategy unless for frequent MT mobility. Hence, we propose an analytic model to evaluate the mean signaling delay and the mean bandwidth per call according to the type of MT mobility. In our analysis, the MHMIP outperforms the DHMIP and MIP strategies in almost all the studied cases. The main contribution of this paper is the analytic model that allows the mobility management approaches performance evaluation.
SINGLE-LINK FAILURE DETECTION IN ALL-OPTICAL NETWORKS USING MONITORING CYCLES AND PATHS:--DOTNET--2009
In this paper, we consider the problem of fault localization in all-optical networks. We introduce the concept of monitoring cycles (MCs) and monitoring paths (MPs) for unique identification of single-link failures. MCs and MPs are required to pass through one or more monitoring locations. They are constructed such that any single-link failure results in the failure of a unique combination of MCs and MPs that pass through the monitoring location(s). For a network with only one monitoring location, we prove that three-edge connectivity is a necessary and sufficient condition for constructing MCs that uniquely identify any single-link failure in the network. For this case, we formulate the problem of constructing MCs as an integer linear program (ILP). We also develop heuristic approaches for constructing MCs in the presence of one or more monitoring locations. For an arbitrary network (not necessarily three-edge connected), we describe a fault localization technique that uses both MPs and MCs and that employs multiple monitoring locations. We also provide a linear-time algorithm to compute the minimum number of required monitoring locations. Through extensive simulations, we demonstrate the effectiveness of the proposed monitoring technique.
MULTIPLE ROUTING CONFIGURATIONS FOR FAST IP NETWORK RECOVERY:--JAVA--2009
As the Internet takes an increasingly central role in our communications infrastructure, the slow convergence of routing protocols after a network failure becomes a growing problem. To assure fast recovery from link and node failures in IP networks, we present a new recovery scheme called Multiple Routing Configurations (MRC). Our proposed scheme guarantees recovery in all single failure scenarios, using a single mechanism to handle both link and node failures, and without knowing the root cause of the failure. MRC is strictly connectionless, and assumes only destination based hop-by-hop forwarding. MRC is based on keeping additional routing information in the routers, and allows packet forwarding to continue on an alternative output link immediately after the detection of a failure. It can be implemented with only minor changes to existing solutions. In this paper we present MRC, and analyze its performance with respect to scalability, backup path lengths, and load distribution after a failure. We also show how an estimate of the traffic demands in the network can be used to improve the distribution of the recovered traffic, and thus reduce the chances of congestion when MRC is used.
VIRUS SPREAD IN NETWORKS:--DOTNET--2009
We study how the spread of computer viruses, worms, and other self-replicating malware is affected by the logical topology of the network over which they propagate. We consider a model in which each host can be in one of 3 possible states - susceptible, infected or removed (cured and no longer susceptible to infection). We characterize how the size of the population that eventually becomes infected depends on the network topology. Specially, we show that if the ratio of cure to infection rates is larger than the spectral radius of the graph, and the initial infected population is small, then the final infected population is also small in a sense that can be made precise. Conversely, if this ratio is smaller than the spectral radius, then we show in some graph models of practical interest (including power law random graphs) that the final infected population is large. These results yield insights into what the critical parameters are in determining virus spread in networks.
MINING FILE DOWNLOADING TIME IN STOCHASTIC PEER TO PEER NETWORKS:--DOTNET--2008
On-demand routing protocols use route caches to make routing decisions. Due to mobility, cached routes easily become stale. To address the cache staleness issue, prior work in DSR used heuristics with ad hoc parameters to predict the lifetime of a link or a route. However, heuristics cannot accurately estimate timeouts because topology changes are unpredictable. In this paper, we propose proactively disseminating the broken link information to the nodes that have that link in their caches. We define a new cache structure called a cache table and present a distributed cache update algorithm. Each node maintains in its cache table the information necessary for cache updates. When a link failure is detected, the algorithm notifies all reachable nodes that have cached the link in a distributed manner. The algorithm does not use any ad hoc parameters, thus making route caches fully adaptive to topology changes. We show that the algorithm outperforms DSR with path caches and with Link-Max Life, an adaptive timeout mechanism for link caches. We conclude that proactive cache updating is key to the adaptation of on-demand routing protocols to mobility.
RATE & DELAY GUARANTEES PROVIDED BY CLOSE PACKET SWITCHES WITH LOAD BALANCING:--JAVA--2008
In this paper, we consider an overarching problem that encompasses both performance metrics. In particular, we study the network capacity problem under a given network lifetime requirement. Specifically, for a wireless sensor network where each node is provisioned with an initial energy, if all nodes are required to live up to a certain lifetime criterion, Since the objective of maximizing the sum of rates of all the nodes in the network can lead to a severe bias in rate allocation among the nodes, we advocate the use of lexicographical max-min (LMM) rate allocation. To calculate the LMM rate allocation vector, we develop a polynomial-time algorithm by exploiting the parametric analysis (PA) technique from linear program (LP), which we call serial LP with Parametric Analysis (SLP-PA). We show that the SLP-PA can be also employed to address the LMM node lifetime problem much more efficiently than a state-of-the-art algorithm proposed in the literature. More important, we show that there exists an elegant duality relationship between the LMM rate allocation problem and the LMM node lifetime problem. Therefore, it is sufficient to solve only one of the two problems. Important insights can be obtained by inferring duality results for the other problem.
GEOMETRIC APPROACH TO IMPROVING ACTIVE PACKET LOSS MEASUREMENT:--JAVA--2008
Measurement and estimation of packet loss characteristics are challenging due to the relatively rare occurrence and typically short duration of packet loss episodes. While active probe tools are commonly used to measure packet loss on end-to-end paths, there has been little analysis of the accuracy of these tools or their impact on the network. The objective of our study is to understand how to measure packet loss episodes accurately with end-to-end probes. We begin by testing the capability of standard Poisson- modulated end-to-end measurements of loss in a controlled laboratory environment using IP routers and commodity end hosts. Our tests show that loss characteristics reported from such Poisson-modulated probe tools can be quite inaccurate over a range of traffic conditions. Motivated by these observations, we introduce a new algorithm for packet loss measurement that is designed to overcome the deficiencies in standard Poisson-based tools. Specifically, our method entails probe experiments that follow a geometric distribution to 1) enable an explicit trade-off between accuracy and impact on the network, and 2) enable more accurate measurements than standard Poisson probing at the same rate. We evaluate the capabilities of our methodology experimentally by developing and implementing a prototype tool, called BADABING. The experiments demonstrate the trade-offs between impact on the network and measurement accuracy. We show that BADABING reports loss characteristics far more accurately than traditional loss measurement tools.